Liczby

 

LICZBY

 

 

 

Co jest najmądrzejsze? Liczba.
Co jest najpiękniejsze? Harmonia.
Czym jest cały świat? Liczbą i Harmonią.
                                                     Pitagoras
   

 

Pitagoras był jednym z największych matematyków starożytności. Pitagoras nauczał, że liczba rządzi nie tylko miarą i wagą, ale wszystkimi zjawiskami zachodzącymi w przyrodzie, że jest treścią harmonii panującej we wszechświecie. Powyższa sentencja pokazuje, jak wielkie znaczenie przypisywano liczbie już w starożytności.

Niektóre liczby, z którymi spotykamy się w różnych sytuacjach, mają ciekawe, wręcz zaskakujące własności ...

 

   
Liczby doskonałe - to takie liczby, które są równa sumie wszystkich swoich dzielników mniejszych od nich samych.
Pierwsza liczba doskonała to 6.
     

 

     D6 = { 1, 2, 3, 6 }                                   6 = 1 + 2 + 3

 

Druga liczba doskonała to 28.

 

     D28 = { 1, 2, 4, 7, 14, 28 }                     28 = 1 + 2 + 4 + 7 + 14

 

W starożytności znano cztery liczby doskonałe: 6,  28,  496,  8128.

 


Liczby zaprzyjaźnione - dwieliczby A i B nazywają się zaprzyjaźnionymi, jeśli suma dzielników liczby A równa się liczbie B i odwrotnie - suma dzielników liczby B równa się liczbie A. Przy czym nie bierze się pod uwagę samych liczb A i B jako dzielników. Takimi liczbami zaprzyjaźnionymi są - jak wykazał Pitagoras - 220 i 284.
Istotnie:
    D
284
= {1, 2, 4, 71, 142, 284}
    D220
= {1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220}
     220 = 1 + 2 + 4 + 71 + 142
     284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110

 

Poniżej pary liczb zaprzyjaźnionych mniejszych od 100000.
(220,284)
(1184,1210)
(2620,2924)
(5020,5564)
(6232,6368)
(10744,10856)
(12285,14595)
(17296,18416)
(63020,76084)
(66928,66992)
(67095,71145)
(69615,87633)
(79750,88730)

 


Liczby kwadratowe - to kwadraty liczb naturalnych 1, 2, 3, 4, 5, ..., a więc: 1,  4,  9,  16,  25,  36, ...
Ponieżej wykaz pierwszych dwudziestu liczb kwadratowych

 

n

kn

 

1   

1

11

121

2

4

12

144

3

9

13

169

4

16

14

196

5

25

15

225

6

36

16

256

7

49

17

289

8

64

18

324

9

81

19

361

10

100

20

400

 


Liczby sześcienne - to sześciany liczb 1, 2, 3, 4, 5, ..., czyli 1,  8,  27,  64,  125, ...

Liczby palindromiczne
 - to liczby, które przy czytaniu z lewej strony do prawej i odwrotnie są jednakowe. Liczby takie nazywane są także liczbami symetrycznymi.
Ciekawostką matematyczną jest, że każdy palindrom liczbowy w systemie dziesiętnym złożony z parzystej liczby cyfr jest podzielny przez 11.
Przykłady liczb palindromicznych:    57775,  626,  1111111...


Liczby bliźniacze  - to dwie kolejne liczby nieparzyste będące liczbami pierwszymi.
Przykłady liczb bliźniaczych:  3 i 5,   5 i 7,   11 i 13 ...


Liczby lustrzane -  to takie dwie liczby, które są lustrzanym odbiciem. Przykłady liczb lustrzanych: 13 i 31, 125 i 521, 3245 i 5423. 

 

 

Liczby trójkątne ich nazwa pochodzi stąd, że każda taka liczba  jest liczbą np. kół jednakowej wielkości, z których można ułożyć trójkąt równoboczny o boku  zbudowanym z tych kół. Oto sposób odnajdywania kolejnych liczb trójkątnych i zarazem ich geometryczna ilustracja:

 

Liczby trójkątne

 

 

 

Liczbami trójkątnymi nazwał Pitagoras liczby: 1,  3,  6,  10,  15, 21, 28, 36, 45, 55, 66, 78,    

 

                                                                                91,105, 120…